博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ 3522 Slim Span(极差最小生成树)
阅读量:4836 次
发布时间:2019-06-11

本文共 3553 字,大约阅读时间需要 11 分钟。

                       
Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 9546   Accepted: 5076

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {

v1v2, …, vn} and E is a set of undirected edges {
e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph 
G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {

v1v2v3v4} and five undirected edges {
e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of 
G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. akand bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 51 2 31 3 51 4 62 4 63 4 74 61 2 101 3 1001 4 902 3 202 4 803 4 402 11 2 13 03 11 2 13 31 2 22 3 51 3 65 101 2 1101 3 1201 4 1301 5 1202 3 1102 4 1202 5 1303 4 1203 5 1104 5 1205 101 2 93841 3 8871 4 27781 5 69162 3 77942 4 83362 5 53873 4 4933 5 66504 5 14225 81 2 12 3 1003 4 1004 5 1001 5 502 5 503 5 504 1 1500 0

Sample Output

1200-1-110168650 思路: 求一个生成树,要求生成树的各边权值极差最小。 一开始想到的Prim,枚举某一个点的每一条边,接下来的扩展尽可能往这条边靠,想了一下,有些许困难。 原因是一个点边的扩展可能有多条,所以不知道我们应该下一步究竟要选那些边。 于是去用kruskal,也是枚举边,就是枚举每一条边,作为起始的第一条边,以此生成最小生成树,比较每一个生成树的极差。 比起prim,kruskal好写一点。。。 代码
#include
#include
#include
#include
#include
using namespace std;int f[10086];struct node{ int x,y; int w;}e[10086];int n,m;const int inf = 2100000000;bool cmp(node a,node b){ return a.w

  

转载于:https://www.cnblogs.com/ZGQblogs/p/9380853.html

你可能感兴趣的文章
selinux
查看>>
linux 常用命令
查看>>
hadoop知识体系
查看>>
android 使用代码实现 RelativeLayout布局
查看>>
android-Ultra-Pull-To-Refresh的使用
查看>>
docker 基本操作
查看>>
无缝滚动的float属性
查看>>
价值观作业
查看>>
char , unsigned char 和 signed char 区别
查看>>
挂起布局逻辑与恢复布局逻辑
查看>>
back to back
查看>>
Linux/Unix笔记本
查看>>
博弈问题之SG函数博弈小结
查看>>
数组排序 --- 庞果
查看>>
Cocos2d-x 处理双击事件的两种方法
查看>>
热键循环切换当前窗口为1/4、1/3、2/3屏幕大小
查看>>
用户权限管理
查看>>
30天敏捷生活(12): 整理你的空间
查看>>
纯虚函数
查看>>
Django与前端的交互
查看>>